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Abstract

We consider the special case of tracking objects in highly
structured scenes. In the context of vehicle tracking in ur-
ban environments, we offer a fully automatic, end-to-end
system that discovers and parametrizes the lanes along
which vehicles drive, then uses just these pixels to simul-
taneously track dozens of objects. This system includes a
novel active contour energy function used to parametrize
the lanes of travel based only on the accumulation of spatio-
temporal image derivatives, and a tracking algorithm that
exploits longer temporal constraints made possible by our
compact data representation; we believe both of these may
be of independent interest. We offer quantitative results
comparing tracking results to ground-truthed data, includ-
ing thousands of vehicles from the NGSIM Peachtree data
set.

1. Introduction
The recent deployment of very large-scale camera net-

works and persistent aerial imaging sensors has led to a
unique version of the tracking problem, with the goal of
detecting and tracking every vehicle within a large urban
area. In this paper, we exploit the constraints inherent in
urban environments – that while there are potentially many
vehicles, they follow relatively consistent pathways – to de-
velop a real-time, fully automated system to track a very
large number of vehicles.

Long-term persistent surveillance data is increasingly
being collected and archived; while there are numerous
privacy concerns, efficient algorithms for simultaneously
tracking many objects from this data supports a variety of
public safety goals. These include goals related to indi-
vidual vehicles, such as tracking vehicles involved in hit-
and-run incidents or finding the origin of illegal dumping
operations. Additionally, summary statistics of the trajec-
tories of vehicles as they move through a city and accel-
eration profiles of vehicles along those tracks are key data
elements in the design of modern transportation systems.

Figure 1. A space-time sheet is an image constructed from image
data extracted over time from a curve in image space. We show
that in structured scenes, such as cars driving on roads, it is pos-
sible to automatically parametrize the paths of consistent motion
and obtain accurate tracking results using only the data contained
in these sheets.

Continual analysis of these trends can help to determine, for
instance, whether gas prices are encouraging people to in-
crease mileage by driving more efficiently (predominantly
by accelerating more slowly), and this analysis is possible
given an efficient system for collecting trajectories of large
sets of vehicles.

Furthermore, tracking cars within a city is a proxy prob-
lem for a growing class of important problems requiring
the tracking of objects moving along initially unknown, but
highly structured paths. One example of this is tracking
T-cells moving through the lymph system; these cells can
be observed to move along specific paths within the lymph
system using two-photon microscopy, a novel in-vivo imag-
ing technique that gives 2- and 3-D movies of fluorescently
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tagged cells in living tissue. Observations of the paths T-
cells, including how many take each path and how quickly
they move through the lymph node are important in detect-
ing immune diseases [12].

One of the key challenges in large scale tracking with
modern imaging systems is the amount of data that is gen-
erated; this is true both for the case of persistent aerial video
where bandwidth and storage are critical limiting issues,
and in camera networks where there are additional orga-
nizational challenges in dealing with data feeds at different
locations. Learning the structure within the scene and cap-
turing the “right” data (that is, the data that is most useful
for tracking), is one key approach to allowing these systems
to continue to scale up. Furthermore, in some of the biolog-
ical imaging systems, learning the structures in the scene
is itself of biological interest, and sampling fewer voxels
within the 3D volume prevents the slow cell death caused
by the two-photon imaging systems [4].

Therefore, this paper considers the problem of tracking
in highly structured environments, with a focus on learning
the scene structure, and tracking using a small fraction of
the image pixels. We propose a novel, fully automatic, real-
time system specialized for tracking vehicles. Given video
data as input, the system learns the road and lane structure
of the scene by observing consistent local motion patterns
and uses pixel values captured only along the middle of the
lane to support multi-object tracking of dozens of vehicles
at a time.

Our contributions include the novel overall framework of
this system, demonstrating the performance of our Matlab
implementation, which is capable of simultaneously track-
ing dozens of objects at 25 FPS, and evaluating the tracking
results against a large, ground-truthed data set prepared by
the Next-Generalization Simulation (NGSIM) traffic sim-
ulation community. Additionally, this implementation in-
cludes a novel active-contour energy formulation, which we
use to parametrize the lanes of travel directly from spatio-
temporal image derivatives in video data, and the novel use
of extended temporal data along possible trajectories to im-
prove and simplify vehicle tracking.

Figure 1 illustrates this paradigm. For each lane, we can
summarize the long-term temporal behavior along that line
by creating a 2D “sheet” that shows the intensity values
along the pixels within the lane over time. This sheet shows
the vehicles passing through that lane, reducing a tracking
problem from 3D (two spatial dimensions and time) to 2D.

1.1. Related Work

Using Space-Time Sheets Reasoning about spatio-
temporal volumes has become extremely popular with the
increasing memory capacity and speed of computers. Ex-
plicit reasoning about spatio-temporal slices has received
attention only in specialized problem domains. Spatio-

temporal slices were first used in the context of regulariz-
ing structure from motion when the camera motion stays
constant [5], and more recently to reason about specular re-
flections [6].

Within the context of human activity recognition, spatio-
temporal slices have been shown to be an effective and com-
pact representation for applications such as person detection
and people counting [16], tracking [13, 17] and behavior
recognition [9].

Road Extraction The problem of road delineation has
been widely studied, since there is a tremendous need to au-
tomatically generate geographic information systems. Tra-
ditional methods of road extraction utilize static satellite
imagery and are based solely on the appearance of roads,
though some recent methods have used video data [10, 18].

Numerous approaches to road extraction make use of Ac-
tive Contours, an algorithm originally introduced by Kass
et al. [8]. Melonakos et al. [11] redefine Active Contours
with an energy term directing a snake’s orientation to fit
known orientations within the image using Finsler Met-
rics [3]. These snakes have directional cost functions that
make it much cheaper to align along a road in the direc-
tion of the roads travel. They illustrate their methods to
segment road imagery. We view our work as addressing
two key limitations of this previous work. First, although
Melonakos et al. optimize open-ended snakes instead of
closed contours, these snakes have fixed endpoints; in con-
trast, we allow the endpoints of the snake to move freely to
force lengthening and alignment with roads. Additionally,
the “directional data” used in [11] is not derived from mo-
tion; rather, it is artificially generated by fitting a static im-
age template along roads. In contrast, we use the accumula-
tion of spatio-temporal image derivatives suggested by [15]
to define a mean vector field of observed motion within the
scene. This gives both a direction and a magnitude of mo-
tion, giving a different type of underlying directional data
to which we would like to fit a snake.

Location-Specific Motion Priors Closely related to the
present work is research into effective use of motion priors
in object tracking [7]. Jacobs et al. propose to condition
the motion likelihood term on the tracked objects image lo-
cation. Our work represents an extreme form of location-
specific motion priors, in which the motion priors are in-
troduced as hard constraints rather than a modification of
the motion likelihood term. This view greatly decreases the
amount of image data that must be considered resulting in a
significantly faster algorithm.

Multi-Object Tracking There is a large body of work on
multi-object tracking; see the article by Yilmaz [19] for an
overview. The two most relevant recent works [20, 14] use



network flow-based methods to extract tracks from lower
level primitives. Zhang et al. [20] use two-dimensional ob-
ject detections as primitives. These primitives are linked as
nodes in a min-cost flow problem. Perera et al. [14] use a bi-
partite matching framework to link tracklets, short segments
of objects that are linked prior to data association. To our
knowledge, our work is the first to consider the multi-object
tracking problem using only image data sampled from a re-
stricted set of curves.

1.2. System Overview

Our proposed system works in four stages. First, we fit
a set of curves to the consistent motion patterns in the im-
age (Section 3). Then we extract a set of space-time sheets
from a video by sampling the image data along these curves
(Section 2). Next, we process the sheets to generate a set
of partial object tracks, or tracklets (Section 4). Finally, we
perform a data association step to combine tracklets from
one or more sheets into complete object tracks (Section 5).

2. Space-Time Sheets

A space-time sheet, or simply a sheet, is an image con-
structed from video data extracted along a single curve in
image space over a temporal interval. In our examples, the
curve, which we call a sheet curve, is typically drawn along
a lane of traffic. In a single video sequence there may be
one or many space-time sheets of interest depending on the
application and the scene.

Pixels in a sheet are parametrized by a temporal, t, and
a spatial coordinate, u. Given a sheet curve, s⃗k(u), and a
video, I , we construct a sheet, Sk(u, t) = I(s⃗k(u), t), by
extracting the colors of pixels under the curve, sampling
every one pixel width, for each frame of the video.

Fig. 2 shows example sheets extracted from video of a
traffic scene. The figure highlights the predictable nature of
the appearance of cars traveling along sheets.

A significant benefit of working with the sparse sheet
representation is the greatly reduced bandwidth require-
ments per second of video. For example, a 640 × 480
video with five lanes of traffic can be reduced to approxi-
mately 1% of the original data. It is conceivable that this
process could be integrated deeper into the imaging sys-
tem to reduce the image data bandwidth between the cam-
era and the tracking system. This will be especially useful
in bandwidth-constrained scenarios, such as gigapixel cam-
eras or low-bandwidth wireless links.

3. Road Delineation using Active Contours

Active contours, or “snakes,” provide a framework for
parametrizing 2D curves (splines) along image boundaries
while balancing global smoothness constraints and local

(a) Example frame of video. (b) “Road Score” R.

Figure 3. An example of the road score for a video. Darker pixels
indicate a higher value.

image features. In this section, we fit active contours to
motion cues accumulated over time in video data. Tradi-
tionally, active contours have an energy function defined as
the sum of an internal energy function and an external en-
ergy function:

Etotal = Eint + Eext

The classical formulation of the internal energy component
encourages the curve, s⃗, to lengthen by maximizing the first
derivative, while minimizing curvature by penalizing the
second derivative:

Eint(s⃗) = −�
∫ ∣∣∣∣∣∣s⃗′(u)

∣∣∣∣∣∣du+ �

∫ ∣∣∣∣∣∣s⃗′′(u)
∣∣∣∣∣∣du

To specialize these for delineating roads in video, we
propose a novel external energy term, which also has two
parts. The first part directly encourages the snake to lie on
image regions with high “road score” (defined in the next
section and shown in Figure 3(b)). The second compo-
nent of the external energy equation utilizes the optic flow
field data and encourages the snake to align with the optic
flow vectors. The intuition for this component of the energy
function is that the spline should grow in the direction that
cars travel.

Eext(s⃗) = −
∫
R(s⃗(u))2du+�

∫ ∣∣∣∣∣∣V (s⃗(u))− s⃗′(u)
∣∣∣∣∣∣du

These terms are formalized in the next section.

3.1. Motion and Spatio-Temporal Derivatives

To analyze the consistent motion patterns within a scene,
we implement the method from [15], which offers a real-
time, video-rate method to extract a vector field of the mo-
tions observed by a static camera. This method incremen-
tally updates, at each pixel, p, an estimate of the optic flow
vector V⃗ (p) that is most consistent with the spatio-temporal
image derivatives observed at that exact location over the
entire length of the video. These optic flow vectors repre-
sent the typical direction of traffic flow at each location in
the scene.



Figure 2. (left) Example frames from a video of a traffic scene at different frames. Three sheet curves are highlighted in red, green and
blue, respectively. (right) An example of sheets extracted from the three marked lanes derived for 450 frames of video. The curved streaks
visible in the sheets show the cars’ progress moving to the left in the image, and coming to a stop for a light (just outside the field of view).
The sheet on the left corresponds to the top lane; occlusions in that lane are visible as dominant vertical streaks. A lane change is also
visible in this figure: a blue car enters the scene in lane two, its blue streak disappears as it changes lanes at about frame 225 and then
appears in the sheet for lane three. Indeed, the original video frame on the left at time t2 shows between the red and green lanes.

For each pixel, we also compute a “road score” R(p),
which characterizes how often a significant temporal varia-
tion is observed at each pixel

R(p) =

T∑
t=2

∣I(x, y, t)− I(x, y, t− 1)∣ > �R

Since the dominant cause of pixel variation is the motion of
vehicles, this term is a good metric for where roads are.

3.2. Implementation

We construct our snakes using a cubic B-spline, which
ensures continuity and differentiability of the energy terms.
The snake is discretized using uniform sampling with an
average of one point per pixel covered. Since the snake lies
over a continuous domain, we use bilinear interpolation to
estimate V⃗ and R at non-integer pixel locations. The main
algorithm proceeds as follows:

1. Choose a location on the image p with a high “road
score” R(p) and initialize a small initial snake in the
direction V⃗ (p).

2. Iteratively update the snake based on the Euler-
Lagrange differential equations of the energy function
until the gradient descent converges.

3. Set the region of the road score image spanned by the
snake to zero, to prohibit additional snakes from over-
lapping.

Figure 4. Results of our road delineation algorithm for the first
four videos from the NGSIM Peachtree data set.

4. Repeat steps 1-3, until there are no remaining pixels
with a high road score.

Because the length of each road is not known a priori,
spline control points are dynamically added as the snake
lengthens. Additionally, since snakes may get caught in
local minima, the gradient descent may terminate before
a snake has aligned with the full length of the road. To
address this problem, we join any snakes with nearby end-
points.



4. Local Tracking within Space-Time Sheets

This section describes our method of generating a set of
tracklets for a single sheet. This set of tracklets, along with
tracklets from other sheets, is used as input to a global data
association algorithm described in Section 5.

4.1. Detecting Objects on Sheets

The goal of our object detection method is to identify
a set of high-quality starting locations that can be used as
seeds for a local template-based tracker. Because the local
tracker will be used to identify the object’s path through the
sheet, we do not rely on this detector to find the position of
every object in every frame. Instead, our system requires
a detector that outputs few false positives and a sufficient
number of true positives to find each object at least once.

We were guided by the observation that object detection
is much simpler when objects are moving. Combined with
background modeling, motion estimation can provide very
strong cues for discriminating objects from the background.
Additionally, in traffic scenes, moving objects are generally
farther apart than stationary objects, making it far less likely
that two different objects will be grouped into a single de-
tection. Thus, we designed our detection algorithm to find
regions of the sheet that have both a high foreground score
and locally constant, non-zero velocity (See Fig. 5(b) for an
example).

We obtain an estimate of the foreground score at Fk at
each spatial location, u, along the sheet and each time, t, us-
ing background subtraction, to give Fk(u, t) = ∣Sk(u, t) −
Bk(u)∣, where Bk is a background model describing the
median pixel value at each position in Sk.

Following the work in consistent motion detection [15],
we note that regions of consistent motion can be detected
through properties of the local spatio-temporal structure
tensor. In this case, that is the 2× 2 matrix:

S⃗T (u, t) =

[
ΣS2

u ΣSuSt
ΣSuSt ΣS2

t

]
,

where Su is the derivative of the intensity moving in the
spatial direction of the sheet, St is the derivative of the in-
tensity moving through time in the sheet, and the sums are
taken over 5× 5 pixel regions around the point (u, t).

The eigen decomposition of the structure tensor indicates
the local motion consistency. Let e⃗1(u, t) be the first eigen-
vector of S⃗T (u, t) and �1(u, t) be the first eigenvalue. The
first eigenvalue of the structure tensor indicates the mag-
nitude of the dominant linear structure and the first eigen-
vector provides (the total-least squares) estimate of velocity.
With these, we define a binary detector as follows:

(a) (b) (c)

Figure 5. Intermediate steps of the detection process. (a) A sheet
extracted from a road in which a set of cars are beginning to move.
(b) A binary mask that indicates the locations of moving objects.
(c) The set of object detections (each horizontal line represents an
object detection).

O(u, t) = F (u, t) > �foreground and
�1(u, t) > �consistent and

e⃗1(u, t) ⋅ ⟨0, 1⟩ > �velocity

The binary function O(u, t) will be true in regions of
the sheet that correspond to consistently moving foreground
objects (see Fig. 5(b)). We convert this to a set of object de-
tections by performing 1-D connected components analysis
on each row (each time step) of O, and return the center
locations and widths of each detection.

4.2. Tracklet Generation Within Sheets

This section describes our process for taking a set of ob-
ject detections and converting them into a set of tracklets.
To accomplish this, we use a local template tracker, taking
advantage of the long temporal window by matching ap-
pearance data forward and backward in time. When com-
plete, each tracklet ideally includes the entirety of the mo-
tion of a vehicle within a sheet. Tracklets will end when, for
example, a vehicle changes lanes, and the data association
described in Section 5 will connect those tracklets as well
as broken tracklets within a sheet, into a final set of tracks
of objects as they move throughout the video.

Essentially, our algorithm takes detections, runs a brute
force template tracker, uses an exponential forgetting factor
to update the appearance, stops when it runs into an exist-
ing track, off the end of the sheet, or when the appearance
matches the background. Explicitly, we specify a tracklet
by its position x(t), width w, and appearance A over the
range of frames t ∈ T . We initialize the template to be the
intensity values of those pixels from the sheet at the starting
time t0, so that A(t0) = Sk([x(t0) . . . x(t0) + w], t0).

Tracking is then performed in both temporal directions.
(Since the forward and backward directions are symmetric



we only describe forward tracking.) To find the next posi-
tion, we search a range of pixel offsets in the next temporal
row t for the offset a∗ that minimizes a matching cost func-
tion as follows:

a∗(t) = arg min
a∈[aminamax]

(
D(x̂j(t− 1) + a, t) + k ⋅ a2

)
,

where x̂j(t) = x(t) + (x(t) − x(t − 1)) is the prediction
of where the object would be if it continued on a constant
velocity, k ⋅ a2 is a penalty on acceleration, and Dj(u, t) is
the SSD of the template and the sheet at position u and time
t:

Dj(u, t) =

wj∑
i=0

(Sk(u+ i, t)−Aj(i, t− 1))
2
.

The spatial location is updated with the new object location,
xj(t) = x̂j(t − 1) + a∗(t), and the appearance template
is updated with an exponential forgetting factor A(i, t) =
� ⋅ S(xj(t) + i, t) + (1− �) ⋅A(i, t− 1).

Tracking then advances to the next temporal row of
the sheet and continues until either the edge of the sheet
is reached, the average foreground score is too low,
1
wj

∑
u∈�j(t) Fk(u, t) < �foreground, the tracklet overlaps

an existing tracklet by more than half its width, or the final
temporal row of the sheet is reached.

Once local tracking has terminated in both temporal di-
rections, we remove any unassigned detections that overlap
by more than half their width. We then select the remaining
detection with the highest foreground score and repeat the
above tracking procedure until no further detections remain.

5. Data Association Within and Across Sheets
This section describes the process for combining track-

lets that are defined in sheet coordinates into tracks in image
space. The input is a set of tracklets from a set of sheets and
the world space relationship between the sheets.

We cast this data association problem using the min-cost-
flow formulation [20], which minimizes a global cost func-
tion if it can be defined in terms of sums of functions defined
over individual tracklets, pairs of consecutive tracklets and
entry/exit points of tracks. The remainder of this section
describes the choices we made for these functions, defined
in Eqn 11 of [20].

The tracklet merit score, denoted as Ci in the previous
work, defines how likely a given tracklet is to be a true posi-
tive. This score should be lower if the tracklet is more likely.
We define it as follows:

Ci =

{
Cdi
D D < di

C otherwise

where di is the temporal duration of the tracklet, C is a neg-
ative number that represents the best possible track merit,

and D is a cutoff point above which tracklet merit does not
improve solely because it is temporally longer.

We define the tracklet linking score, denoted as Ci,j in
the previous work, as a combination of a simple appear-
ance term and a motion compatibility term. Given a pair of
tracklets, with one identified as the earlier, the goal for the
linking score is that it be lower if the pair is more likely
to be linked. The appearance term is the Euclidean dis-
tance between the average template color of the two track-
lets. The motion compatibility term combines both tracklets
and computes the likelihood of the combined trajectory us-
ing a Kalman filter. The final likelihood of associating the
tracklets is the sum of the appearance and the motion log
likelihoods.

The final unspecified scores are the track creation and
termination scores, Cen,i and Cex ,i respectively. These
scores control track fragmentation and are constant valued
parameters. In practice, we found it useful for the track
creation and termination scores to be roughly −2C so that
tracklets of very high merit are included but tracklets with
low merit must be linked with other tracklets to be included
in the final set of trajectories.

These scores are used as edge costs in a min-cost-flow
problem. The solution is then transformed into image space
trajectories, interpolating between associated tracklets to
obtain complete tracks.

6. Experiments
We validated our approach on the NGSIM Peachtree data

set [1]. This data set was captured through a collaboration
of researchers interested in modeling vehicle behavior [2].
A series of cameras were set up viewing consecutive parts
of Peachtree Street in Atlanta, Georgia, and 15 minutes
of data were simultaneously recorded in each. Extensive
ground truth is freely available within the data set, includ-
ing geo-referenced lane centerlines, intersection locations
and traffic light cycles. A total of more than 1,200 vehi-
cles were tracked through the scene using a semi-automated
tracking system with extensive hand corrections.

6.1. Tracking Metrics

To provide a quantitative evaluation of our system, we
measure the track completeness factor and track fragmen-
tation as defined by Perera et al. [14]. We compute these
metrics as follows:

Given a set of estimated tracks, T , and ground truth
tracks, G, we find an optimal-cost association, A∗, from
each track in T to a corresponding track in G. The cost
of an association is defined as the sum of distances between
the estimated tracks and their associated ground truth tracks,
where the distance between two tracks is defined as the av-
erage Euclidean distance between the estimated object po-



sition and ground truth object position over all frames. The
optimal association, A∗, is the association that minimizes
this cost. From the optimal association, we compute two
performance metrics. The first is the track completeness
factor (TCF), which provides a measure of how well each
object is detected. The second is the track fragmentation
(TF), which provides a measure of how well the identity of
a track is maintained. These are defined as follows:

TCF =

∑
i

∑
Tj∈A(Gi)

∣O(Tj , Gi)∣∑
i ∣Gi∣

TF =

∑
i ∣A(Gi)∣

∣{Gi∣A(Gi) ∕= �}∣
,

where A(Gi) is the set of estimated tracks associated with
track Gi in the optimal association, A∗; O(Tj , Gi) denotes
the frames where Tj and Gi overlap; and ∣ ⋅ ∣ denotes the
cardinality operator.

6.2. Tracking Results

We evaluated our system on seven scenes from the
NGSIM Peachtree data set. Because ground truth was not
provided for any vehicles initially present in the scene, we
discard the first 2,000 frames. The remaining 8,000 frames
were divided into four 2,000-frame subsequences and eval-
uated. The average TCF and TF scores for each camera
are reported in Table 1. These results compare favorably to
previously reported results in similar traffic scenes [14].

The sheet-curves used for tracking were automatically
generatated using the first 1,000 frames of each video. To
evaluate the performance of our road delineation method,
we compare our results using automatically extracted sheet
curves to results obtained using a manually specified set
of sheet curves. We found that hand-labeling of the sheet
curves led to only a slight improvement in our tracking re-
sults.

Note that ground truth positions and identities were only
provided for vehicles traveling on or through Peachtree
Street. Thus, while vehicles on cross streets are tracked
by our system, these tracks do not appear in the ground
truth and cannot be empirically validated. Additionally, be-
cause these vehicles are not included in the ground truth,
they may be erroneously associated with other ground truth
tracks during evaluation, which leads to a higher track frag-
mentation score, even when such vehicles are tracked accu-
rately.

Our system processed each video at approximately 20-
30 FPS running in Matlab 2007b on a desktop workstation
with a 2.66 GHz Intel Xeon processor. Figure 6 shows some
results generated by our method on three of the NGSIM
Peachtree cameras. A sequence of three frames (at 5-second
intervals) is shown for each video.

Manual Automatic
Camera TCF TF TCF TF

1 0.36 ± 0.17 1.36 ± 0.32 0.37 ± 0.05 1.36 ± 0.27
2 0.61 ± 0.05 1.25 ± 0.37 0.57 ± 0.05 1.22 ± 0.33
3 0.71 ± 0.12 1.38 ± 0.31 0.68 ± 0.07 1.37 ± 0.24
4 0.77 ± 0.07 1.14 ± 0.15 0.75 ± 0.03 1.14 ± 0.17
5 0.62 ± 0.07 1.35 ± 0.22 0.57 ± 0.06 1.28 ± 0.16
6 0.63 ± 0.04 1.29 ± 0.18 0.54 ± 0.07 1.34 ± 0.21
7 0.46 ± 0.07 1.40 ± 0.10 0.39 ± 0.06 1.44 ± 0.21

Table 1. The track completion factor (TCF) and track fragmenta-
tion (TF) for the NGSIM Peachtree data set.

7. Conclusion
We have demonstrated a system that can automatically

identify consistent motion patterns in a scene and exploit
this structure to track objects. We demonstrated our al-
gorithm running at frame-rate on urban traffic scenes in a
large, publicly available and ground-truthed data set and
provided quantitative evaluation to support future compar-
isons.

A key advantage of our method is its ability to track ob-
jects using vastly less image data than required by typical
approaches. Because imaging systems are often bandwidth-
limited, decreasing the number of pixels that must be com-
municated can reduce restrictions on the resolution and the
frame-rate. Our work has shown that, if coupled with an
imaging system that can configure which pixels are sam-
pled and transmitted, our system has the potential to enable
tracking at higher frame-rates and in larger images than is
currently possible.
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