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Abstract. In this paper, we present a framework for estimating what
portions of videos are most discriminative for the task of action recogni-
tion. We explore the impact of the temporal cropping of training videos
on the overall accuracy of an action recognition system, and we formal-
ize what makes a set of croppings optimal. In addition, we present an
algorithm to determine the best set of croppings for a dataset, and ex-
perimentally show that our approach increases the accuracy of various
state-of-the-art action recognition techniques.
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Fig. 1. The most discriminative portion of a training video is automatically extracted.
The cropped training video unambiguously belongs to the action category “running”
from [1].

1 Introduction

There exists an inherent ambiguity for actions – When does an action begin and
end? Unlike object boundaries in static images, where one can often delineate
the boundary between an object and its background, determining the temporal
extent of an action is often subjective. Consider the action “eating.” What is the
precise moment that someone begins eating? When food is placed on a table?
When a person picks up a fork? Moreover, when does the action end?

The problem is that the performance of an action recognition system may
vary tremendously depending on the temporal boundaries chosen for the train-
ing samples. Researchers commonly crop training videos qualitatively based on
the semantic definition of an action (which Cour et al . [2], Laptev et al . [3]
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and others point out can be a very difficult task). On the contrary, we set out
to automatically determine temporal croppings for videos which optimize the
performance of an action recognition system. Our objective is to identify the
portions of each training video in a dataset, such that if an individual video is
made any shorter, it would not fully capture the true essence of the action being
performed. Conversely, if a cropped video is lengthened, it would add noise to
the data, making the video less discriminative.

In this paper, we formalize what makes a cropping optimal with respect to the
accuracy of a trained classifier, and we present an algorithm which identifies these
discriminative portions of videos. Our strategy of temporally cropping training
videos is applicable no matter what representation of an action is used. Therefore,
we study the effect of our method on a diverse set of action representations,
and show that on a wide variety of datasets we can consistently improve the
performance of a classifier by temporally cropping training videos to their most
discriminative portions.

Figure 1 illustrates the concept of cropping a training video to its most dis-
criminative portion. By running our algorithm on a video from the Hollywood-2
Human Actions and Scenes Dataset [1], we can automatically determine which
portion of the video is best for detecting the “running” action. Note that un-
like the original video from the dataset which contains ambiguous frames, our
cropped video clearly depicts the action and disregards the frames which are not
discriminative.

Collecting these types of videos, annotating their actions and delineating
their boundaries is a labor-intensive task. For sufficiently large datasets, it is
often impractical to do this manually. This process has been a focus of many re-
search groups in recent years. In [1], [2], [3] and [4] the authors leverage the avail-
ability of movie scripts and closed captioning to get a rough idea of when actions
occur in movies or television shows. The authors then employ various structured
learning approaches to delineate these actions from their videos. Other work
such as [5] and [6], focus on assisting users in the painstaking task of delineating
the exact time and location of actions in videos.

Thus, it is impractical to label examples for supervised training by enforcing
strict definitions of the temporal cropping of actions. Instead, our model for
training involves taking video samples with approximate boundaries, and refining
the samples during training. Moreover, since the temporal extent of an action
is not a well-defined concept, we show that existing datasets can be further
cropped during training to create a more discriminative set of training samples
which improve the accuracy of a classifier, irrespective of what representation of
human actions is used.

To show the broad applicability of our algorithm, we use four unique action
representations: volumetric features, histograms of oriented gradients (HOG),
histograms of optic flow (HOF) and point-trajectory features (Trajectons), which
are a representative sampling of all major approaches. For each of these repre-
sentations, we empirically show that identifying the most discriminative portions
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of each training video, and training a classifier on only those portions, improves
overall performance.

2 Related work

Our specific problem of temporally localizing the most discriminative portions
of an action can be modeled with multiple instance learning, first explored by
Dietterich et al . [7]. Recent work has demonstrated the importance of localizing
or segmenting objects from static images for the task of recognition (e.g ., [8], [9]
and [10]). Similar methods do apply, with the key distinction that we are dealing
with a single interval on the temporal axis rather than a region in the image.
Buehler et al . [11] applied multiple instance learning in the temporal domain
with the unique goal of isolating individual exemplars for actions (sign language
gestures). Our effort however is focused on improving classifier performance, not
finding exemplars.

Recently, there have been a few attempts to mine action recognition datasets
to solve this problem. In [12], Nowozin et al . present an algorithm which searches
for discriminative subsequence patterns in videos. However, since there is no con-
straint that the subsequences be continuous, this solution is equivalent to finding
individual space-time features in the video which are discriminative, as opposed
to our algorithm which determines the most discriminative portion of each video.
Yuan et al . [13] propose a branch-and-bound algorithm which searches for a 3-D
bounding box, akin to our temporal cropping, by maximizing mutual informa-
tion of features and actions under a näıve Bayes assumption. Their method is
specific to an STIP action recognition model, and cannot be applied to other
systems. However, our algorithm treats the underlying action recognition system
as a black box and only requires the ability to train on a subset of the dataset
and evaluate its precision.

Most related to our work is that of Duchenne et al . [4]. Their work aims to
automatically find the location of actions in videos, in a semi-supervised man-
ner. By leveraging the availability of movie scripts and subtitles, their system
begins with a rough estimate of when an action occurs. The authors then refine
the location of this action using structured learning. A key distinction is that
their goal is to determine temporal boundaries that approximate the way a hu-
man would qualitatively crop the data. On the contrary, our algorithm directly
optimizes the accuracy of a classifier trained using the cropped videos. Unlike
the authors of [4], who strive to generate croppings which perform as well as
human-labeled data, we consider the performance of a classifier trained on man-
ually cropped actions to be a baseline. Thus, we can take training data such
as [4]’s “ground-truth” croppings, and further refine the temporal boundaries to
produce a classifier that outperforms human-labeled data on the task of action
recognition.
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3 Problem formulation and overall approach

We define an “optimal set of croppings” as the set of start f0 and end f1 frames
for each video Fi of class Ci in our training dataset which produces a classifier
with the highest leave-one-out training accuracy. This can be quantified with
the following high-level equation:
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For n training videos, each with |f | frames, there are O(n|f |
2
) possible sets of

temporal croppings (in [4], n = 823 and |f | ≈ 280). Due to this exponentially
high-dimensional search space, it is intractable to test the accuracy of a classifier
trained on all possible sets of croppings. Thus, a major question we address is:
How can we optimize over the massive set of potential croppings?

In this paper we leverage the fact that portions of videos which are most
confidently and correctly classified by a trained action recognition system are
highly correlated with actions of the same class and differ from actions of other
classes. Therefore, these portions of the videos are discriminative and are a good
choice for training our classifier.

Our overall approach to determine a good cropping for an individual training
video is as follows:

1. Split the video we aim to crop into its |f |2/2 possible temporal croppings.
2. Train a classifier on the remaining training videos, excluding the one from

step 1.
3. Evaluate this classifier on each of the |f |2/2 croppings.
4. Select the individual cropping that was correctly classified with the highest

level of confidence.

This approach treats the underlying action recognition system as a black box;
thus, it can be applied to almost any classifier. It is a well-founded solution,
which takes the form of stacked generalization [14]. Depending on the specific
type of action representation being used, there are different considerations which
must be taken involving tractability and the overall method of classification.
Sections 4 and 5 explore two instances of this general approach: one based on
space-time representations using volumetric features, the other using a more
common bag-of-words representation.

4 Proof of concept experimentation

We begin by evaluating the effectiveness of our approach using Ke et al .’s volu-
metric features action recognition model [15]. This algorithm creates an action
model from a single training video by segmenting a person from their background
in each frame to create a 3-D silhouette. Detection is performed by comparing
the boundary of this 3-D template to the edges of over-segmented frames from a



Modeling the Temporal Extent of Actions 5

testing video. We chose to experiment on Ke et al .’s volumetric features in this
section, as a representative sample of space-time action models; although, our
method can easily be applied to similar algorithms such as Rodriguez et al .’s
“Action MACH” or Shechtman et al .’s “Space-Time Behavior Based Correla-
tion” techniques [16] [17].

Since [15]’s approach builds an action recognition model from a single video,
as opposed to many videos, there is only a quadratic number of croppings to con-
sider, as opposed to the super-exponential number of possible croppings when
training on multiple videos. Additionally, because the template comparison per-
formed in [15] approximates a convolution operation, which is commutative (i.e.,
the template and training video can be swapped), our methodology of running
a training video through a classifier as if it were a testing video to efficiently
identify discriminative portions is a theoretically well-founded approximation to
the high-dimensional optimization problem.
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Fig. 2. Plot showing the accuracy of volumetric feature templates extracted from dif-
ferent times for an instance of the “jumping jack” action from the Weizmann Actions
as Space-Time Shapes Dataset [18].

To quantify the benefits of temporally cropping a training video prior to cre-
ating an action recognition model, we begin by brute-force testing the accuracy
of fixed length templates centered at every frame of a training video from the
Weizmann Actions as Space-Time Shapes Dataset [18]. Figure 2 shows how the
accuracy of a model varies based on what portion of a video it is extracted from.
The periodic nature of the “jumping jack” action is quantifiable from the sinu-
soidal shape of the accuracy plot. A one-frame template is shown for the most
discriminative and least discriminative portions of the video. It is intuitive that
the most discriminative part of a jumping jack is when a person is in mid-air
with all limbs extended outwards; on the contrary, when the person lands, they
are momentarily indistinguishable from a person standing still. Note that the
accuracies of the models vary between 90% and 99%, indicating that there is
much to be gained by intelligently cropping training videos.



6 Scott Satkin and Martial Hebert

(a) Bend (b) Jumping
Jack

(c) Run (d) Wave

Fig. 3. Example categories from the Weizmann Actions as Space-Time Shapes Dataset
[18].

Worst Cropping Best Cropping
Action Accuracy Accuracy

Bend 90.63 98.00
Jumping Jack 90.94 97.70
Run 93.39 96.47
Walk 93.55 95.70
10-class Average 91.98 95.76

Table 1. Effects of cropping the Weizmann Dataset using Ke et al .’s volumetric feature
action recognition model.

Table 1 reports the results of our approach on the entire Weizmann Actions
as Space-Time Shapes Dataset [18] (shown in Figure 3) which contains 10 ac-
tion classes. An interesting observation is that some classes such as “bend” and
“jumping jack” have a large gap between the best and worst temporal croppings;
however, actions like “run” and “walk” have less room for improvement. This is
intuitive since an action like “bend” occurs at a specific instance, while “walk”
has a relatively consistent appearance over time. The average accuracy of all 10
classes is also reported.

5 Temporal refinment of videos using a bag-of-words
approach

Datasets such as the KTH dataset [19], and the Weizmann dataset [18] used in
Section 4 have been criticized in recent years for not being a realistic sampling
of actions in the real world. To tackle more complex datasets, researchers have
extended the bag-of-visual-words technique from object recognition in images
into the temporal domain. For example, [1], [3] and [4] represent actions as
histograms of space-time interest points (STIPs), which encode both static image
gradients and optic flow. The authors of [20] and [21] propose a similar method
to STIPs-based systems; however, their features are based on the trajectories
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of tracked interest points, which can better model motion than the optic flow
vectors used in previous work.

Therefore, in this section we show how our method from Section 3 can be
used to determine sets of training video croppings which improve the accuracy
of these bag-of-words based classifiers, which are a representative sampling of
state-of-the-art techniques. We evaluate the effectiveness of our approach on two
challenging datasets: Messing et al .’s University of Rochester Activities of Daily
Living [20] and Marsaza lek et al .’s Hollywood-2 Human Actions and Scenes
Dataset [1].

5.1 Determining the best croppings

To search for the best set of croppings for each video in our training set, we
augment the traditional SVM classification formulation as follows:

argmin
{∀i:(f0

i ,f
1
i )},w,b,ξ

(
1
2
||w||2 + C

n∑
i=1

ξi

)
, (2)

subject to: ∀i : yi

w · φ

 f1
i∑

f=f0
i

Hi(f)

+ b

 ≥ 1− ξi. (3)

Our max-margin formulation minimizes over f0 and f1, the starting and ending
frames for each training video (defined in Section 3), in addition to the other
standard SVM parameters. The constraints in Equation 3 include a histogram
accumulation of features between start and end frames. Hi(f) denotes the his-
togram of the quantized features from frame f of video i. As per [3] and [21],
we use 4000 histogram bins for HOF and HOG space-time interest points, and
512 bins for Trajecton features. All feature vectors are L1 normalized prior to
SVM training or classification. For consistency and simplicity, we use the same
C value and a linear kernel for all experiments in this section.

Since it is infeasible to solve this high-dimensional integer linear program,
we will focus on detecting the most discriminative portion of each video individ-
ually, using the approach we introduced in Section 3. This is done by training
a multiclass SVM on all uncropped training videos, excluding the one which we
aim to crop. We use Wu et al . [22]’s method of multiclass SVM classification
which not only assigns category labels, but also estimates the probability that an
instance belongs to each of the classes. We then evaluate the SVM on the |f |2/2
possible temporal croppings of the video excluded from training to determine
how discriminative each segment of the video is.

Figure 4 includes visualizations which indicate what portions of individual
videos from the Hollywood-2 Dataset [4] are most discriminative. Each pixel
in these images represents a different cropping (blue pixels indicate the least
discriminative croppings, and red signifies the most discriminative croppings).
The vertical and horizontal axis specify the starting and stopping frames (f0 and
f1), respectively. The lower left portion of each of these figures is blank, since
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Fig. 4. Heatmaps showing which croppings are most discriminative for individual
videos from the Hollywood-2 Dataset [4].

these are invalid croppings (i.e., f1 < f0). The upper right corner represents the
full uncropped video. These experiments were conducted using Laptev et al .’s
spatio-temporal feature extraction tool [3], and LIBSVM [23].

The leftmost heatmap in Figure 4 was generated from a video in which the
entire video contributes to its overall discriminative quality. The farther from
the diagonal f0 = f1, the longer the cropping, and the more discriminative the
video gets. For videos like this one, we cannot improve the classifier accuracy
with temporal cropping. On the contrary, the next heatmap shows a fascinating
property inherent to many videos. The rightmost portion of the heatmap has
a distinct vertical cyan stripe. This indicates that there are unusual features
contained in the final frames of the video, which make the video far less dis-
criminative. However, by trimming the last frames off of the video, independent
of the starting frame, the classifier’s performance can increase. Lastly, the two
rightmost heatmaps in Figure 4 depict videos where most croppings would make
a bad model for action recognition. For videos of this nature, it is important to
choose a cropping from within the specific region we identify to be discriminative.

It is combinatorially intractable to optimize over all O(n|f |
2
) possible com-

binations of temporal croppings for a dataset with n training videos. Therefore,
we impose the constraint: ∀i, (f1

i −f0
i )/|fi| = α, which restricts our search space

to the set of cropped video clips which are the same fixed percentage α of their
full version. It is intuitive that if α is too low, we are throwing away too much
of the training data; conversely, if α is unnecessarily high, we are not sufficiently
cropping the training data to achieve the best possible results. Therefore, we run
cross-validation to identify the ideal value of α for each dataset.

This process begins by randomly splitting the training data into two parts:
a training set and a validation set. Heatmaps are generated for all videos in
the training set using the leave-one-out method described above. Using these
heatmaps, for a given value of α (which corresponds to a diagonal line in each
heatmap), we can pick the most discriminative cropping. We then iterate over
all values of α from 1% to 100%, and train a classifier on the set of croppings
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which corresponds to each particular value of α. The validation set of data that
was withheld can now be used to determine the best value of α. By decoupling
the location and length parameters of the video segments we aim to extract, we
can efficiently identify discriminative combinations of cropped training videos.
This approximation scheme (which requires no parameter tuning) yielded good
results on all of the datasets with which we experimented.

Our algorithm scales linearly with the dataset size, and is parallelizable.
Additionally, our algorithm acts as a pre-processing step which only needs to
be run once prior to training. Therefore, computational expense is not a major
factor.

5.2 Classification via detection
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Fig. 5. The predicted probabilities for each of the 12 action classes as a function of
time for a “sit down” video from [1]. The correct label is indicated in blue. Frames
from the video are shown on the x-axis at their timestamp.

The standard classification paradigm of training on one set of videos, and
classifying another set of videos, is not a representative problem. It is unrealistic
to expect that a real-world application which uses an action recognition system
would have well-cropped test data, where each video is trimmed to the length
of an action. This has a major impact on how performance is evaluated (which
we discuss in Section 6). Therefore, rather than extracting features from each
video in its entirety, and classifying whole test samples, we employ a methodology
which essentially detects the occurrence of an action in each video. This paradigm
does not require the test videos to be cropped to the temporal extent of an
individual action and can easily be altered to run on a stream of data.

For each testing video, we evaluate the multiclass SVM on a sliding window
of frames. The duration of the sliding window can be set to the median length
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of the cropped training videos to achieve good results. We further improve the
accuracy (on the order of 1%) using cross-validation to tune this parameter.
During classification, we extract features from each set of frames in the sliding
window, and consider each of these segments of video independently of the test
video as a whole. Using [22]’s method, the probability that each of these segments
belongs to individual action classes is determined.

Figure 5 shows how predicted category labels can vary drastically depending
on the portion of the test video used for classification. In this example, the
action “sit down” occurs almost instantaneously at approximately one-third of
the way through the video (as shown in the video frames below the x-axis). For
this brief portion of video, the event “sit down” (indicated in blue) is predicted
by the SVM with high-confidence. At the beginning and end of the video, when
the actress is either standing or has already finished sitting down, the classifier
picks one of the other 12 classes (indicated in red), with a significantly lower
confidence. Because we want to evaluate the performance of our algorithm in
the context of a classification task, we assign a single label to an entire testing
video by simply taking the peak response of the SVM classification from all
timestamps.

5.3 Experimental analysis

To demonstrate the broad applicability of our approach, we evaluate the benefits
of temporally cropping videos using the method described in Section 5.1 on three
unique action representations: Histograms of Optic Flow (HOF) [3], Histograms
of Oriented Gradients (HOG) [3] and Trajectons [21].

Our goal is to empirically show that: By adjusting the temporal boundaries
of training videos as a pre-processing step, we can improve the accuracy of a
classifier, regardless of the action representation being used. The sole purpose of
the experimental analysis is to evaluate the added benefit of temporally cropping
training videos to their most discriminative portions.

To compare our work with other action classification papers, we can only
train a single multi-class SVM (and therefore can only use one set of croppings).
However, our solution is general and without modification to the algorithm, we
could determine a separate set of croppings for each action to train individual
SVMs.

Table 2 reports the improvements from cropping the Hollywood-2 dataset
prior to training. For consistency with other experiments in this paper, we use
overall percentage accuracy as our performance metric. The baseline accuracy is
the performance of a classifier which is trained and tested using full videos from
the dataset. We compare that to the accuracy of a classifier which is trained only
on the most discriminative portions of a video, using our cropping algorithm.
The final columns quantify the absolute and percentage improvements due to
cropping. Similarly, Table 3 reports the improvements from cropping the Uni-
versity of Rochester dataset prior to training. The key observation is that our
strategy consistently improves the performance of an action recognition system
independent of what types of features are used.
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(a) (b) (c) (d)

Fig. 6. Example categories from the Hollywood-2 Human Actions and Scenes Dataset
[1]. Pictured left to right: Drive, Kiss, Hug, Answer Phone.

Baseline Accuracy Our Accuracy Absolute Change % Improvement
(using full videos) (cropped videos) cropped - full (cropped - full)/full

Trajectons 37.84 41.85 4.01 10.60
HOG 33.08 33.71 0.63 1.90
HOF 38.47 43.48 5.01 13.02

Table 2. Effects of cropping the Hollywood-2 Dataset using three different action
representations.

(a) (b) (c) (d)

Fig. 7. Example categories from the University of Rochester Activities of Daily Liv-
ing [20]. Pictured left to right: Answer Phone, Dial Phone, Drink Water, Write on
Board.

Baseline Accuracy Our Accuracy Absolute Change % Improvement
(using full videos) (cropped videos) cropped - full (cropped - full)/full

Trajectons 46.00 54.00 8.00 17.39
HOG 54.67 60.00 5.33 9.75
HOF 79.33 80.00 0.67 0.84

Table 3. Effects of cropping the University of Rochester Dataset using three different
action representations.
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6 Discussion and future work

This research has begun to explore the benefits of identifying the most dis-
criminative portion of training videos. We presented a framework which uses
a trained classifier to predict the most discriminative part of each video, irre-
spective of the action representation being used. Our methodology has proven
to be broadly applicable, and shows the tremendous impact that the temporal
cropping of videos has on the accuracy of an action recognition system. Future
work will continue researching the effects of the identifying the most discrimi-
native portions of training videos. We hope that combining multiple croppings
and perhaps extending our approach to search for regions both spatially and
temporally will yield even further improvement.

As a final note, while studying this problem, we noticed an important prop-
erty inherent to many datasets. Because videos in most action recognition datasets
are cropped to the approximate temporal extent of each action, the length of
each test sample tends to be highly correlated with its action label. For exam-
ple, 38% accuracy on the University of Rochester Dataset and 27% accuracy on
the Hollywood-2 Dataset can be achieved by classifying solely on the number
of frames in each video. This bias can easily be exploited if care is not taken
to explicitly normalize for this issue. For example, it is necessary to L1 normal-
ize feature histograms prior to training or classification. Not normalizing these
feature vectors can lead to a substantial boost in classifier accuracy (e.g ., 15%
increase in accuracy using Trajectons on the University of Rochester Dataset).
Features themselves, such as those in [20], can also implicitly encode for the
length of videos, by not limiting the number of frames which they describe.

Although using these types of features or not explicitly normalizing to ignore
the number of frames in each video can yield better classification results, this
is an artifact of the dataset biases and cannot be generalized to other action
recognition tasks. As discussed in Section 5.2, it is not reasonable to assume
that videos will be cropped tightly to the temporal extent of each action. For
example, in the real-world problem of detecting the occurrence of actions in
video streams, models which implicitly encode for the length of actions are no
longer applicable. Moreover, if we knew how to crop these videos, this would be a
solved problem. That is why we chose to implement classification as a detection
problem.

This suggests ways to revisit the generation of datasets for action recognition
to avoid these biases. By providing test data that is not cropped to the temporal
boundaries of each action, it ensures that good action recognition systems are a
result of understanding and modeling actions, not exploiting properties inherent
to individual datasets.
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